ALGEBRA II QUALIFYING EXAM

You will be graded on 4 out of 5 questions. If you submit solutions to all 5 please specify on the first page which question you choose to be ignored.

- (1) Let $\alpha = \sqrt{2} + \sqrt{5}$.
 - (a) Find the minimal polynomial f of α over \mathbb{Q} .
 - (b) Show that $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt{5})$ and hence that $\mathbb{Q}(\alpha)$ is the splitting field of f over O.
 - (c) Find the other roots of f, and write them in terms of α .
- (2) Explicitly find all the intermediate fields of the extension $\mathbb{Q}(\xi_8)/\mathbb{Q}$ where ξ_8 is a primitive 8th root of unity.
- (3) Show directly (i.e. without appealing to the fact that A is injective) that if A is a divisible \mathbb{Z} -module, and M is any \mathbb{Z} -module, then a short exact sequence

$$0 \to A \to M \to \mathbb{Z}/n\mathbb{Z} \to 0$$

splits.

(4) Let R be the ring $\mathbb{C}[x]/(x^n)$ for some $n \geq 2$, and view \mathbb{C} as an R-module via the quotient $\mathbb{C} \cong R/(x)$. (a) Sh

 $\dots \xrightarrow{f \mapsto x^{n-1}f} \mathbb{C}[x]/(x^n) \xrightarrow{f \mapsto xf} \mathbb{C}[x]/(x^n) \xrightarrow{f \mapsto x^{n-1}f} \mathbb{C}[x]/(x^n) \xrightarrow{f \mapsto xf} \mathbb{C}[x]/(x^n) \xrightarrow{/(x)} \mathbb{C}[x]/(x^n$

is a projective resolution of \mathbb{C} as an *R*-module, where ... indicates the the sequence continues infinitely in the same manner.

- (b) For all $i \ge 0$, compute the dimension of $\operatorname{Tor}_i^R(\mathbb{C}, \mathbb{C}[x]/(x^2))$ as a complex vector space.
- (5) Show that if R is a semi-simple ring, and M is a simple R-module, then R has a submodule isomorphic to M.