ALGEBRA II QUALIFYING EXAM

You will be graded on 4 out of 5 questions. If you submit solutions to all 5 please specify on the first page which question you choose to be ignored.
(1) Let $\alpha=\sqrt{2}+\sqrt{5}$.
(a) Find the minimal polynomial f of α over \mathbb{Q}.
(b) Show that $\mathbb{Q}(\alpha)=\mathbb{Q}(\sqrt{2}, \sqrt{5})$ and hence that $\mathbb{Q}(\alpha)$ is the splitting field of f over \mathbb{Q}.
(c) Find the other roots of f, and write them in terms of α.
(2) Explicitly find all the intermediate fields of the extension $\mathbb{Q}\left(\xi_{8}\right) / \mathbb{Q}$ where ξ_{8} is a primitive 8th root of unity.
(3) Show directly (i.e. without appealing to the fact that A is injective) that if A is a divisible \mathbb{Z}-module, and M is any \mathbb{Z}-module, then a short exact sequence

$$
0 \rightarrow A \rightarrow M \rightarrow \mathbb{Z} / n \mathbb{Z} \rightarrow 0
$$

splits.
(4) Let R be the ring $\mathbb{C}[x] /\left(x^{n}\right)$ for some $n \geq 2$, and view \mathbb{C} as an R-module via the quotient $\mathbb{C} \cong R /(x)$.
(a) Show that
$\ldots \xrightarrow{f \mapsto x^{n-1} f} \mathbb{C}[x] /\left(x^{n}\right) \xrightarrow{f \mapsto x f} \mathbb{C}[x] /\left(x^{n}\right) \xrightarrow{f \mapsto x^{n-1} f} \mathbb{C}[x] /\left(x^{n}\right) \xrightarrow{f \mapsto x f} \mathbb{C}[x] /\left(x^{n}\right) \xrightarrow{/(x)} \mathbb{C}$
is a projective resolution of \mathbb{C} as an R-module, where \ldots indicates the the sequence continues infinitely in the same manner.
(b) For all $i \geq 0$, compute the dimension of $\operatorname{Tor}_{i}^{R}\left(\mathbb{C}, \mathbb{C}[x] /\left(x^{2}\right)\right)$ as a complex vector space.
(5) Show that if R is a semi-simple ring, and M is a simple R-module, then R has a submodule isomorphic to M.

